

RedMonk Note

 February 16, 2007 Page 1/6

www.redmonk.com Copyright © 2007 RedMonk

 Open Source ESBs for Application

Integration (SOA Optional)

by Anne Zelenka

An ESB establishes a

unified

communications

channel and uses a

bus architecture for

scalability.

Lightweight open source enterprise service bus (ESB)
implementations offer a low cost, scalable, and practical approach to
enterprise application integration. Some commercial vendors offer
the idea that ESBs must be the heart or backbone of an SOA and
therefore require a significant investment of money along with
additional integrated components. But you can achieve high-
performance application integration without buying into an entire
SOA stack and story.

ESBs don’t have to be about SOA, but if you are interested in moving towards a
service-based architecture while integrating disparate applications, you may want
to experiment with one as a way of moving incrementally in that direction. Open
source offerings provide an ideal way to do that because they have no license
fees, allow you to modify and extend the code as you see fit, and may be
supported by thriving developer and user communities focused on practical use.

What is an ESB?
Although there is some dispute as to what an enterprise service bus includes and
what qualifies as one, an implementation of the ESB architectural pattern usually
displays these characteristics:

• Uses a bus architecture for scalability and reliability. The first
generation of enterprise application integration (EAI) platforms that
became popular in the late nineties usually used a central broker through
which all application communication traffic passed. A bus architecture, on
the other hand, distributes its processing to where the applications reside
rather than centralizing it at a hub.

• Establishes a unified communications channel. This is often
implemented using a messaging server such as JMS. Different
implementations of the ESB architectural pattern may require the use of
certain message formats such as the WS-* XML-based web services
specifications.

• Provides integration, mediation, and communication services that
include logging application events, transforming messages from one
format to another, routing messages based on content or other factors,
guaranteeing delivery, and enforcing security requirements.

• Standards-based. This is another way in which ESBs differ from their
EAI forerunners, which generally used proprietary communications

RedMonk Note

 February 16, 2007 Page 2/6

www.redmonk.com Copyright © 2007 RedMonk

ESBs don’t have to

be used in the

context of a grand

SOA effort.

formats and protocols. For example, most ESBs “understand” the WS-*
set of interface specifications. Some ESBs follow the Java Business
Integration specification (JBI) which is a WS-* compliant description of
an SOA infrastructure while others adhere to the Service Component
Architecture (SCA).

• May provide additional features such as process orchestration, a rule
execution engine, or automated service discovery.

ESBs and Service-Oriented Architecture
ESBs don’t have to be used in the context of a grand SOA effort and similarly,
implementing an SOA doesn’t require an ESB. Furthermore, neither an SOA nor
an ESB requires the usage of a particular set of standards like WS-* or JBI.
Neither an SOA nor an ESB supposes a particular set of technology components.
SOA-style thinking favors flexibility over one way of doing things.

What is SOA, if not a WS-*, SOAP-based enterprise architecture? Perhaps it is
more usefully thought of as an architectural pattern for enterprise information
technology in which coarse-grained application services are combined and
recombined flexibly to meet the needs of an ever-changing business. SOAs
almost always integrate disparate applications and technologies, and ESBs are
often used to achieve this integration.

The ultimate goal of SOA is a set of application processes driven by business
needs rather than the other way around. This doesn’t mean, therefore, that an
SOA infrastructure should be designed from the top down taking the current
business requirements as forever static. In fact, the most practical way to achieve
that goal of technology subordinate to the business may be to build the
infrastructure itself using SOA-style thinking. That is, compose it from reusable
and interoperable pieces that you can mix and match, add and discard, modify
and expand, as the business needs and requirements inevitably change.

Commercial ESB Implementations
The big enterprise software vendors sell ESBs, along with entire stacks of SOA
infrastructure. Oracle offers an ESB as part of its SOA Suite, which includes a
BPEL process manager, a business rules engine, and a web services registry,
among other components. BEA markets its AquaLogic Service Bus alongside its
WebLogic Server as an "enterprise-class integration backbone." IBM's
WebSphere can be outfitted with an ESB from IBM that can serve as the "heart of
your SOA."

Smaller software vendors like TIBCO and Progress also sell ESB
implementations. TIBCO markets its ESB as part of its BusinessWorks
"Integrated Services Environment." Progress puts its Sonic ESB at the foundation
of its product family, which includes an orchestration server, XML server, and
database service.

RedMonk Note

 February 16, 2007 Page 3/6

www.redmonk.com Copyright © 2007 RedMonk

Companies are

already using open

source ESBs

productively.

Beyond offering integrated and comprehensive SOA platforms, some commercial
vendors and their consultants suggest an even bigger SOA story–the business
story–where SOA becomes not just about service-orienting your IT, but also
service-orienting your way of working. Sometimes this is called shared services.
It allows business functions like HR or purchasing to be decentralized and
recentralized in different ways, to achieve cost savings or strategic objectives or
ideally, both.

Current Open Source ESB Offerings
But ESBs don’t have to be primarily about service orientation and they don’t
have to be aligned with your business in order to be worth an investment of some
time and experimentation. If you are concerned primarily with legacy application
integration and with exploring loosely coupled architectures, experimenting and
prototyping with open source ESBs might be a productive path to take.

A company contemplating an incremental and practical bottom-up approach to
application integration might want to try out the standalone, lighter-weight open
source ESBs. These are enterprise service buses that are not always delivered as
part of an SOA platform or stack but are rather components that may interoperate
with what you already have. Current open source ESB offerings include Mule,
Synapse, Celtix, ServiceMix, JBossESB, and Open ESB.

Open Source ESBs in Use
Although the ESB category is relatively new in the open source landscape,
companies are already using them productively. For example, Mule ESB users
include European direct debit and credit processor Voca, financial services giant
State Street, mega-retailer Wal-Mart, and Japan’s Osaka Gas and Information
Systems. Atkins Global, an engineering consultancy and design firm, has selected
IONA’s Celtix to quickly begin an SOA initiative while containing upfront
licensing costs. Apache ServiceMix is being deployed by a large government
agency in a system supporting clinical trials reporting, has been embedded within
a commercial data integration solution, and is used as the platform for a
distributed energy trading and risk management solution.

A few actual usage scenarios will illustrate the practical, bottom-up approach just
described. These scenarios suggest how companies can achieve integration
success at the same time they experiment with SOA concepts and tools.

Developing Application Integration Strategy for Aircraft Maintenance IT
A major US airline is experimenting with a lightweight open source ESB
implementation in order to develop a strategy for integrating a large number of
applications supporting aircraft maintenance. The applications requiring
integration include custom-built mainframe systems, Teradata warehouses, and
SAP ERP applications. Operating systems in use include z/OS, Unix, and
Windows; programming languages include J2EE and C++. The J2EE
applications are considered legacy applications and were built without service
orientation in mind.

RedMonk Note

 February 16, 2007 Page 4/6

www.redmonk.com Copyright © 2007 RedMonk

The team found the

documentation and

tooling in the open

source ESB to be

somewhat lacking.

A lightweight standalone open source ESB was selected for this ongoing
prototyping project because of its clean, easy-to-understand architecture and for
its JBI support. JBI support was considered important by the team in the hopes it
might prevent proprietary lock-in in the future.

Creating a Web Gateway for an Existing Trading Platform
A financial services company extended its trading platform with web services
access by creating a bridge server using an open source ESB. The bridge server
handles data transformation and provides for scalability horizontally (i.e.,
increased traffic) and vertically (i.e., additional functionality). The lack of license
fees was a main factor in the decision to choose an open source ESB.

The company factored in the ESB’s usage of standards. Their preference was not
to be tied to JBI, so an ESB that didn’t require the use of JBI was favored. JBI
adds complexity with features their team didn’t need, such as dynamic discovery
of services.

Selecting an open source ESB wasn’t without tradeoffs. The team found the
documentation and tooling in the open source ESB somewhat lacking. They
would like to see additional documentation about integrating with various
application servers and about getting started. They’d also prefer to use a graphical
tool for creating configurations rather than writing XML directly.

A Risk Management Company Chooses a Lightweight ESB
A risk management company chose an open source ESB because it could work
with any web application server including WebLogic, WebSphere, and Oracle’s
OC4J. Although they have only used the selected ESB internally so far, the
possibility of expanding their web services infrastructure to clients in the future
was of major importance.

The company perceived TIBCO’s offering as a bit too heavy and requiring too
much infrastructure to set up before they could start. They favored an ESB that
worked well with the Spring framework. They didn’t take on a comprehensive
comparison of ESBs because they needed to get something working quickly.

Evaluating Open Source ESBs
Not all enterprise service buses are created equal and the same holds true within
the category of open source ESBs. Among the considerations you’ll want to take
into account when evaluating an ESB are these:

• Origin: where and how a project originated matters, but not in any
deterministic way. Projects started by developers in order to meet a
defined technical need and projects begun by for-profit companies as a
way of expanding their business model can produce equally viable open
source efforts. By understanding the history of a particular ESB
implementation, you will be better equipped to judge how it might fit your
organization’s needs.

RedMonk Note

 February 16, 2007 Page 5/6

www.redmonk.com Copyright © 2007 RedMonk

One major benefit of

open source can be a

thriving community

providing assistance

and new features.

• Maturity: an ESB that’s still in an alpha or beta stage will likely have
fewer features and perhaps more bugs than one that’s gone through more
releases. On the other side, a less mature one might give your organization
more opportunity to participate in its development and evolve it in the
direction that works with your long-term plans.

• Level of commitment to standards: certain projects are built from the
ground up in order to conform to and support certain standards (e.g.,
ServiceMix with JBI and Synapse with the WS-* specifications). Others,
like Mule, are more agnostic with respect to standards, supporting them
but not dogmatically. You may want to choose your ESB based on your
own level of commitment to standards.

• Flexible deployment options: if you are interested in experimenting with
an open source ESB, you may want the option of deploying initially in a
very simple manner so you can get started quickly. Some of the ESBs
support a variety of deployment models that can allow you to start simply
and then move to more advanced models as your requirements demand.

• Platform support: you’ll of course want to consider whether the ESB
you’re thinking of using supports the platforms (application servers, web
servers, messaging middleware, application frameworks) you’re already
using.

• Community viability and momentum: one major benefit of open source
can be a thriving community providing assistance and new features, but
not every open source project creates a sustainable ecosystem. Check the
developer forums, the product roadmap, and any mailing lists to get a
quick read on the community supporting the project.

• Commercial support: commercially available support represents an
important commitment on the part of a business—and for many IT shops,
lack of commercial support would remove a product from consideration.
You need more than just a way of logging bugs and getting patches. Look
for performance tuning and training support. Also, check whether the
company providing support has commit rights on the project. If they
don’t, they may not be able to provide you with the critical fixes you need
on a timely basis.

• Tooling and documentation: open source projects are often thought of as
“by developers for developers” and this has some truth to it. Open source
ESBs may have rudimentary tooling and documentation compared to their
commercial counterparts. If your development staff has the ability to
figure things out without documentation and GUIs, then this won’t matter
as much.

RedMonk Note

 February 16, 2007 Page 6/6

www.redmonk.com Copyright © 2007 RedMonk

You don’t have to

buy into an entire

SOA story or

expensive SOA stack

to benefit from ESBs

for application

integration.

RedMonk Red Lights
Increasingly, the most popular business model for software is a hybrid that
combines open source and commercial licensing models. Drawing a too-thick
line between open source and commercial ESBs therefore would be misleading.
Most viable open source projects have some commercial entity backing them up
in some way (MuleSource for Mule, LogicBlaze for ServiceMix, and IONA for
Celtix, for example). On the other side, medium-sized and large commercial
software vendors are experimenting with how open source efforts fit in with their
own plans. For example, Sun offers Open ESB as an alternative to its Java CAPS
platform.

Another reason to resist any strict categorization of open source versus
commercial ESBs is that open source ESBs are not necessarily lightweight and
standalone while commercial offerings may be able to be deployed that way.
Some open source ESBs are available as part of an integrated SOA stack, and
some commercial options may work well as a drop-in component, even though
they’re not always marketed that way. If you do want to experiment, the easiest
course is certainly an open source ESB, because you can download the source
and go, no purchase order required.

Be aware of increasing disenchantment percolating throughout IT with SOAP and
the WS-* specifications. Though SOA is often considered inextricably linked to
these standards, some practitioners feel that they are architecturally counter to the
loosely coupled, URI-based, RESTful nature of the web itself. It may be prudent
to take a wait and see approach on such standards and choose a product that can
support them but doesn’t require or assume them.

RedMonk Take
Open source ESBs represent a potentially useful tool for enterprise application
integration, and you don’t have to buy into an entire SOA story or expensive
SOA stack to benefit from them. Whether you resonate with SOA-style thinking
or not, you may want to take one for a test run to see how it can help you
integrate your legacy and new applications. Their flexible deployment models,
low barriers to entry, and community support make them ideal for experimenting
with new ways of achieving loosely coupled application integration.

About RedMonk

RedMonk is a research and advisory services firm that assists enterprises,
vendors, and systems integrators in the decision-making process around
technology deployments. We cover the industry by focusing on business and
operational context rather than speeds and feeds and feature tick-lists.

Founded by James Governor and Stephen O’Grady, and headquartered in Denver,
Colorado, RedMonk is on the web at www.redmonk.com.

